Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | \(-g_{4}-2g_{-1}+g_{-2}\) | \(-h_{4}+h_{2}+h_{1}\) | \(-g_{2}+1/2g_{1}+1/2g_{-4}\) | \(g_{7}\) | \(g_{10}+1/2g_{3}\) | \(-g_{12}+2g_{6}\) | \(g_{8}\) | \(g_{16}\) | \(g_{18}+g_{13}\) | \(g_{20}+g_{9}\) | \(g_{15}\) | \(g_{17}+g_{11}\) | \(g_{14}\) | \(g_{21}\) | \(g_{19}\) | \(g_{22}\) | \(g_{23}\) | \(g_{24}\) |
weight | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi\) | \(0\) | \(2\psi\) | \(\omega_{1}-3\psi\) | \(\omega_{1}-\psi\) | \(\omega_{1}+\psi\) | \(\omega_{1}+3\psi\) | \(2\omega_{1}-4\psi\) | \(2\omega_{1}-2\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi\) | \(2\omega_{1}+4\psi\) | \(3\omega_{1}-\psi\) | \(3\omega_{1}+\psi\) | \(4\omega_{1}-2\psi\) | \(4\omega_{1}\) | \(4\omega_{1}+2\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi} \) → (0, -2) | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{2\psi} \) → (0, 2) | \(\displaystyle V_{\omega_{1}-3\psi} \) → (1, -3) | \(\displaystyle V_{\omega_{1}-\psi} \) → (1, -1) | \(\displaystyle V_{\omega_{1}+\psi} \) → (1, 1) | \(\displaystyle V_{\omega_{1}+3\psi} \) → (1, 3) | \(\displaystyle V_{2\omega_{1}-4\psi} \) → (2, -4) | \(\displaystyle V_{2\omega_{1}-2\psi} \) → (2, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{1}+2\psi} \) → (2, 2) | \(\displaystyle V_{2\omega_{1}+4\psi} \) → (2, 4) | \(\displaystyle V_{3\omega_{1}-\psi} \) → (3, -1) | \(\displaystyle V_{3\omega_{1}+\psi} \) → (3, 1) | \(\displaystyle V_{4\omega_{1}-2\psi} \) → (4, -2) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{4\omega_{1}+2\psi} \) → (4, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi\) | \(0\) | \(2\psi\) | \(\omega_{1}-3\psi\) \(-\omega_{1}-3\psi\) | \(\omega_{1}-\psi\) \(-\omega_{1}-\psi\) | \(\omega_{1}+\psi\) \(-\omega_{1}+\psi\) | \(\omega_{1}+3\psi\) \(-\omega_{1}+3\psi\) | \(2\omega_{1}-4\psi\) \(-4\psi\) \(-2\omega_{1}-4\psi\) | \(2\omega_{1}-2\psi\) \(-2\psi\) \(-2\omega_{1}-2\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi\) \(2\psi\) \(-2\omega_{1}+2\psi\) | \(2\omega_{1}+4\psi\) \(4\psi\) \(-2\omega_{1}+4\psi\) | \(3\omega_{1}-\psi\) \(\omega_{1}-\psi\) \(-\omega_{1}-\psi\) \(-3\omega_{1}-\psi\) | \(3\omega_{1}+\psi\) \(\omega_{1}+\psi\) \(-\omega_{1}+\psi\) \(-3\omega_{1}+\psi\) | \(4\omega_{1}-2\psi\) \(2\omega_{1}-2\psi\) \(-2\psi\) \(-2\omega_{1}-2\psi\) \(-4\omega_{1}-2\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+2\psi\) \(2\omega_{1}+2\psi\) \(2\psi\) \(-2\omega_{1}+2\psi\) \(-4\omega_{1}+2\psi\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi}\) | \(\displaystyle M_{\omega_{1}-3\psi}\oplus M_{-\omega_{1}-3\psi}\) | \(\displaystyle M_{\omega_{1}-\psi}\oplus M_{-\omega_{1}-\psi}\) | \(\displaystyle M_{\omega_{1}+\psi}\oplus M_{-\omega_{1}+\psi}\) | \(\displaystyle M_{\omega_{1}+3\psi}\oplus M_{-\omega_{1}+3\psi}\) | \(\displaystyle M_{2\omega_{1}-4\psi}\oplus M_{-4\psi}\oplus M_{-2\omega_{1}-4\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}+4\psi}\oplus M_{4\psi}\oplus M_{-2\omega_{1}+4\psi}\) | \(\displaystyle M_{3\omega_{1}-\psi}\oplus M_{\omega_{1}-\psi}\oplus M_{-\omega_{1}-\psi}\oplus M_{-3\omega_{1}-\psi}\) | \(\displaystyle M_{3\omega_{1}+\psi}\oplus M_{\omega_{1}+\psi}\oplus M_{-\omega_{1}+\psi}\oplus M_{-3\omega_{1}+\psi}\) | \(\displaystyle M_{4\omega_{1}-2\psi}\oplus M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\oplus M_{-4\omega_{1}-2\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi}\oplus M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\oplus M_{-4\omega_{1}+2\psi}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi}\) | \(\displaystyle M_{\omega_{1}-3\psi}\oplus M_{-\omega_{1}-3\psi}\) | \(\displaystyle M_{\omega_{1}-\psi}\oplus M_{-\omega_{1}-\psi}\) | \(\displaystyle M_{\omega_{1}+\psi}\oplus M_{-\omega_{1}+\psi}\) | \(\displaystyle M_{\omega_{1}+3\psi}\oplus M_{-\omega_{1}+3\psi}\) | \(\displaystyle M_{2\omega_{1}-4\psi}\oplus M_{-4\psi}\oplus M_{-2\omega_{1}-4\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}+4\psi}\oplus M_{4\psi}\oplus M_{-2\omega_{1}+4\psi}\) | \(\displaystyle M_{3\omega_{1}-\psi}\oplus M_{\omega_{1}-\psi}\oplus M_{-\omega_{1}-\psi}\oplus M_{-3\omega_{1}-\psi}\) | \(\displaystyle M_{3\omega_{1}+\psi}\oplus M_{\omega_{1}+\psi}\oplus M_{-\omega_{1}+\psi}\oplus M_{-3\omega_{1}+\psi}\) | \(\displaystyle M_{4\omega_{1}-2\psi}\oplus M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\oplus M_{-4\omega_{1}-2\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi}\oplus M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\oplus M_{-4\omega_{1}+2\psi}\) |
2\\ |